M1.	(a)	(i) $CH_{3}CH=CHCH_{3}$	1
		Addition or radical (QoL)	1
	(ii)	$CH_{3}CH(OH)CH(OH)CH_{3}$ or with no brackets	1
		butan(e)– <u>2,3</u> –diol or <u>2,3</u> –butan(e)diol	1
HOOC-	H H -C-C- CH₃ CH	$\begin{array}{ccc} H & H \\ - & H$	1
		2.3–dimethylbutan(e)dioic acid 2.3 –dimethylbutan(e)dioyl chloride ignore –1,4–	1
		condensation (QoL)	1
	(iii)	NaOH or HCl etc or Na₂CO₃ Allow conc sulphuric/nitric NOT water nor acidified water nor weak acids	1
(b H) Stru CI 2 N -C 1 H	Instructure 1 H_3 $CH_2 OH$ $-C - N - C - COOH$ I I O H	
		Allow –CONH– and –COHN– Allow zwitterions NOT polypeptides/repeating units	1
	Stru	cture 2 either of	

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH_{2}OH & CH_{3} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ - \end{array} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ - \end{array} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ H_{2}N - \begin{array}{c} C \\ - \end{array} \\ \left(\begin{array}{c} (i) \\ (i) \\ CH_{3}CH_{3}CH_{3}CH_{2}OH \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} (i) \\ (ii) \\ CH_{3}CH_{3}CH_{3}CH_{3}CH_{2}OH \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} (i) \\ (ii) \\ (iii) \\ (nucleophilic) substitution or from CH_{3}CH_{2}CH_{2}Br \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ i\\ r \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} (iii) \\ (nucleophilic) substitution or from CH_{3}CH_{2}CH_{2}Br \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ \\ - \end{array} \\ \left(\begin{array}{c} i\\ - \end{array} \\ - \end{array} \\ = \end{array} \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ - \end{array} \\ = \left(\begin{array}{c} i\\ - \end{array} \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ - \end{array} \\ = \left(\begin{array}{c} i\\ - \end{array} \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ = \left(\begin{array}{c} i\\ - \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\$$

M2.C

[1]

[15]

M3. (a) necleophilic addition;

1

4

M3 structure;

(be lenient on position of charge on CN–) (M2 not allowed independent of M1, but allow M1 for correct attack on C+ if M2 show as independent first.) (+on C of C=O loses M2 but ignore δ + if correct) (M4 for arrow and lone pair (only allow for correct M3 or close))

(ii) can be hydrolysed

OR

can be reacted with/attacked by acid/base/nucleophiles/H₂O/OH-;

1

1

1

1

(d) (i)

$$CH_3 CH_2 - C - H$$

 COO^-
(allow -NH₃*)

(ii)

$$CH_3 CH_2 - C - H$$

$$COOH$$
(or zwitterions product)

(iii) nucleophilic substitution;

[14]

(Ignore n or brackets, but trailing bonds are essential)

(ii) Addition or radical

1

1

(b) (i) 2-aminobutanoic (acid)

1

1

1

1

1

(c) (i) $C_{3}H_{4}O_{2}$

$$\begin{array}{c} HO \longrightarrow C \longrightarrow CH_2CH_2 \longrightarrow C \longrightarrow OH\\ \parallel & \parallel\\ O & O\end{array}$$

[8]

[1]